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EVAPORATION OF HD DROPLETS FROM NONPOROUS, INERT SURFACES
IN TGA MICROBALANCE WIND TUNNELS

1. INTRODUCTION

The environmental fate of chemical warfare agents (CWAs) on targeted surfaces
is important in modeling vapor and contact hazard for decisions influcncing safety of personnel
in contaminated areas. The goal is to provide data sets to allow development of improved modcls
for hazard predictions, supporting decisions on personnel safety. The main objective of this
study is to provide fundamental understanding of agent evaporation/desorption as a function of
material variables as well as environmental variables. Chemical warfare agent droplets on a
surface either evaporate or sorb into the surface material, then desorb at slower, diffusion
controlled rates.! The rates of these processes determine the environmental fate of CWAs, and
these rates are important because the contact and vapor hazard are critical input for models used
to support decisions on the level of individual protection at fixed sites.” Table | shows possible
agents and surfaces.

Table 1. Possible CW Agents and Surfaces

Surface
CW Agent Control (Laboratory) Real World
HD Glass Concrete
GD Aluminum Asphalt
VX Teflon Sand/Soil
Thickened Aggregate Vegetation
Mortar

A drop of agent on a surface will evaporate. There are two possible mechanisms:
(1) the drop maintains constant contact angle, and (2) the drop maintains constant contact area.
1f a drop maintains constant contact angle, the rate of evaporation changes throughout the
process because the surface area changes as the evaporation proceeds as shown in Figurc 1. On
the other hand, if the drop maintains constant contact area, the surface area should not change
much throughout the process; therefore, the rate of evaporation remains constant (also shown in
Figure 1). Chemical warfare agent can also diffuse through the pores of the surface and slowly
diffuse back out to evaporate, providing the surface is porous and chemically inert. Thcse ratcs
are a function of material variables (e.g., chemical vapor pressure, the drop size, the porc size,
and the surface substrate). They are also a function of environmental variables such as
temperature, relative humidity (RH), and wind speed.

Two different microbalances, TA Instrument TGA 2950 and SDT Q600
configured in a wind tunnel geometry, were used to measure the cvaporation and desorption rates
from surfaces. The TA Model SDT Q600 is a dual beam, horizontal microbalancc with

Text continues on page 16.
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simultaneous differential thermal analysis system, and TA Model TGA-2950 is a vertical
microbalance with evolved gas geometry (Figures 2-6). The chemical agent, HD, was placed on
several different surface materials, which are not chemically reactive with HD and also not
porous. They are Aluminum 2024, Glass, and Teflon. The weight loss (evaporation) rates were
measured under different conditions. One of the surface materials, Aluminum 2024, is from the
unpainted floor of a C17 Cargo Aircraft.” After each measurement, residual CWA was analyzed
using GC/MSD.

The methods used here are also applicable to agent fate within building interiors.
The rates were also measured as a function of environmental variables, such as tcmperature, RH,
and wind speed. The weight-loss versus time plots were overlaid to allow comparison of the
rates under various conditions.

2 EXPERIMENTATION
2l Materials

The purity of HD used was 90+% by GC/TCD. The reference nonporous
materials used were 2024 Aluminum, Teflon, and glass. The concrete was standardized for the
program, and the composition of the concrete and its components has been documented.’

9189) Instrumentation

Microbalance wind tunnels were adapted from thermogravimetric analyzers
(TGA). The TA Instrument Model TGA-2950 vertical microbalance was used in evolved gas
analysis (EGA) mode to produce a horizontal wind tunnel geometry. The dual beam, horizontal
microbalance with simultaneous differential thermal (SDT) analysis (TA Model SDT-Q600) was
used as the microbalance wind tunnel. The residual CWA was analyzed using GC/MSD.

A photo of the horizontal microbalance 1s shown in Figure 2. The motorized
temperature control chamber 1s shown in the Open position, and the two balance beams are
exposed for loading the chemical agent drop onto a material surface on the sample holder.

A diagram of the dual beam balance is shown in Figure 3. The flow is from right
to left. The sample and reference holder are shown at the end of the two beams. The furnace tube
provides a cylindrical ceramic wind tunnel around the contaminant droplet on the material
surface.

The vertical microbalance TA Instruments Model TGA-2950 is shown in the
Open position in Figure 4. The EGA fixture is shown installed in Figure 5.

* Private communication with Tim Provens, Wright-Patterson AFB, Wright-Patterson, OH.
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The flow direction from right to left is indicated along with a superimposed
diagram of a contaminant droplet on a matenial surface (not to scale). A close-up diagram
provided in Figure 6 shows the holder for the surface material and the measurement and control
thermocouple close to the matenal surface.

Temperature and RH are controlled by a humidity gencrator (Thunder Scientific
Corporation Model 2500, Albuquerque, NM).

2.3 Surface Preparation

Glass and Teflon discs were cleancd by the following procedurc: the disc was
submerged in concentrated HNO3 (65%) for 24 hr (lightly swirlcd on a rotating plateau). Then,
the glass was rinsed with dematerialized water and dried (using appropriate fat-free non-felting
paper towcls). Subsequently, the disk was rinsed shortly with 99% PA hexane and wiped dry
(using appropriate fat-free non-felting paper towels).

2.4 Conditions

The influential factors that can affcct evaporation/desorption rates, other than the
intrinsic properties of droplets and surfaces, are tcmperature, humidity, and wind speed. The
temperatures of interest are the droplet temperature, the substrate temperature, and the air
temperature.* According to a statistical consideration using meteorological data, the tempcraturc
set to be studied was 15 °C, 40 °C, and 55 °C. The initial study used the flow rate of
100 mL/min, and later 500, and 1000 mL/min.’

B RESULTS AND DISCUSSION

Examples of evaporation and/or desorption measurements results are provided in
Figures 7 through 16. All plots have droplet weight on the y-axis and time on the x-axis. All of
these interim plots have been neither normalized nor filtered into their final format. In all cases,
individual cxperiments have been combined and overlaid onto a single plot to allow
comparisons. Thc preliminary wind specds notcd were mean valucs based on flow ratc and
cross-sectional area; the wind speed at the drop surface interface is becing determined and
reported separately.*®’

3.1 HD on Aluminum Surface

The evaporation rates of HD from aluminum are shown 1n Figure 7; two
rcpetitions each are shown for target drop sizes of 0.5, 1, and 2 mg. The time to complctc
evaporation increases systcmatically from about 210 to about 650 min (factor of 3.1x) as the
drop size increases from 0.5 to 2 mg (factor of 4x). There is a slight decrease in rate (from 4.4
pg/min to 3.0 pg/min) with decreasing drop size, perhaps due to a smaller surface arca for
smaller HD drops on aluminum. The results are summarized in Table 2.

Text continues on page 28.
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Table 2. Evaporation Rates of HD Droplets from Aluminum Surface Measured
by Microbalance Wind Tunnel (TGA) at 30 °C and 0% RH.

Run No Evaporation Rate Dropsize Ave. Rate Figure
' by TGA (pg/min) (1L) (1g/min)
[29 3.374
132 2.946
34 > 807 0.5 2.996 +0.259 8
136 2.855
103 3.686
118 3.607
121 3215 1.0 3.420+0.213 9
123 3.253
127 3.341
107 4.278
109 4.364
111 4.048 2.0 4419 +0.284 0
113 4.674
117 4.730

Five repetitions for HD evaporation from aluminum are plotted for droplets of
approximately 1.6 mm spherical diameter or 2.0 pL in volume (Figure 8). The measurements
show good reproducibility and time to completc evaporation at about 10 to 11 hr. The ability of
the operator to reproduce the targeted drop size at the 2-3 mg level was quite good, ranging about
0.15 mg or a 5% range. Figure 9 shows evaporation rate of 1 pL drops of HD (approximately
1.2 - 1.45 mg) from aluminum. At the targeted drop size of 0.5 pL or 0.62 mg (Figure 10), a
range of drop masses from 0.57 to 0.75 mg (about 0.47 - 0.6 uL) were deposited on glass discs.
These three figures show the difficulty in deposition of targeted drop sizes as the drops become
smaller. However, the microbalance wind tunnels have the advantage that the actual drop size
deposited is measured, regardless of the target drop size. Our other methods for other
environmental fate experiments still need to overcome this procedural difficulty. The drop
masses varied by a factor of about 1.3x, and the time to complete evaporation varied by about
1.16x (250/215 min).
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Figure 11 shows the weight loss of HD droplets on aluminum disks at various
temperatures (i.e., 30, 40, and 55 °C). As expected, at higher temperature, the rate of weight loss
was greater. Figures 12 and 13 show the weight loss of HD droplets at two different flow rates.
Again, as expected, at higher flow rates, the rate of weight loss was greater. These results are

summarized in Table 3.

Table 3. Evaporation Rates of HD Droplets from Aluminum Surface under Various

Conditions Measurcd by Microbalance Wind Tunnel (TGA).

3.2

change in rate with cleaning, perhaps due to removal of any cxisting dirt or greasc spots from the

Evaporation o
l;;i)n Rate by TGA ng? ’ /?ve)nljiz:]t)e [(:rlgl\;rﬁ?nt)e (li /H) Instrument
| (ug/min) i :

1 7.441

2 7.977 30 7.709 + 0.379

3 7.691

10 1729

11 16.61 40

12 17.07 17.42 + 0.905 1000 0 TGA2950
13 18.71

14 18.19 ,

7 22.13

8 39.10 55 34.60 + 10.94 '
16 42.57

H4 2.629

+

T > 830 AR 2.734 4+ 0.148 1000 o |
H6 1.830 (~20) ’

1o 1 679 1.755 +0.107 100 |
H7 13.86

2 — 12.74 + 1.584 1000 SDT Q600
HI10 8.418 4 2l
HI 9034 8.826 +0.577 100
HI12 26.47
HI3 |  27.97 Sl Rkt anbit M s 10.5
H14 49.34 49.34 1000

HD on Glass

The evaporation rates of HD from a glass surface arc shown in Figure 14. Two
repetitions cach are shown for the cover glass with and without cleaning. There is a slight

glass surface, which could cause either a different contact angle or a different drop shape.
However, when two different types of glass discs were used (both cleaned with the same
procedure), the evaporation rates were almost identical to those shown in Figure 15.
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Figure 16 shows the evaporation rates of HD from glass (window). Two
repetitions each are shown for target drop sizes of 1, 3.5, and 6 pL. The time to complete
evaporation increases systematically from about 360 to about 1300 min (factor of 3.6x) as the
drop size increases from | to 6 pL (factor of 6x). Figure 17 also shows the evaporation rates of
HD from glass (TNO). The results were similar to those obtained with window glass. In both
cases, there is an increase in rate with increasing drop size, perhaps due to a larger surface area
for larger HD drops on glass. The results are summarized in Table 4.

Table 4. Evaporation Rates of HD Droplets from Glass Surface Measured
by Microbalance Wind Tunnel (TGA) at 30 °C and 0% RH.

Run No Evaporation Rate Dropsize Ave. Rate Flow Rate
) by TGA (pg/min) (uL) (ng/min) (mL/min)

GLP1001 2527

GLP1003 2.887 1.0 2.746 +0.192

GLP1005 2.824

GLP3001 4.446 100
GLP3002 4360 3.5 4.403 +0.061

GLP6001 5.968

GLP6002 6210 6.0 6.089 +0.171

GLTI1001 5.463

GLT1002 4.971

GLT1003 1747 1.0 5.028 + 0.306

GLT1004 4.930

GLT3001 8.433

GLT3002 10.73

GLT3003 8.309 ot 230 1000
GLT3004 10.83

GLT6001 14.97

GLT6002 12.76

GLT6003 11.82 6.0 12.58 + 1.684

GLT6004 10.37

GLT6005 12.96
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Figures 18 and 19 show the weight loss of HD droplets from glass discs at various
temperatures (i.e., 30, 40, and 55 °C). As expected, at higher temperatures, the rate of weight
loss was greater. Figures 20 and 21 show the weight loss of HD droplets at different flow rates.
Again, as expected, at higher flow rates, the rate of weight loss was greater. Figure 22 shows the
weight loss of HD droplets at three different RHs. It is apparent that the humidity has little, if
any, influence to the evaporation of HD under these conditions. These results are summarized in
Table 5.

Table 5. Evaporation Rates of HD Droplets from Glass Surface under Various Conditions
Measured by Microbalance Wind Tunnel (TGA).

Evaporation
Rate by Temp. Ave. Rate Flow RH Instrument
Run No. & . Rate .
TGA ("O) (ng/min) ; (%) (Figure)
; (mL/m)
(pg/min)
GLP3001 2.524
GLP3002 2.045
GLP3003 > 879 30 2.568 + 0.382
GLP3005 2.823
GLP4001 6.759
GLP4002 5.531] 40 6.063 + 0.630 100 0 TGA2950
GLP4003 5.899 (18)
GLPS5501 17.34
GLP5502 19.96
GLP5503 17.19 o5 18.52 + 1.836
GLP5504 2001
GLP5505 17.09
GLT3001 7.744
GLT3002 7189 30 7.467 +0.392
GLT4001 13.92
GLT4002 17.96
GLT4003 15.01 | Tt Lioe 000 . SDT Q600
GLT4004 16.43 (19)
GLTS5501 51.63
GLT5502 46.28
GLT5503 4523 55 48.70 + 3.422
GLT5504 51.64
GLP100-1 ST,
GLP100-2 5.515 6.052 + 0.649 100
GLP100-3 | _ 5.869 40 0 TG(’;‘(%? 30
GLP1000-1 9.892
GLP1000-2 1026 10.08 +0.260 | 1000
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Table 5. Evaporation Rates of HD Droplets from Glass Surface under Various Conditions
Measured by Microbalance Wind Tunnel (TGA). (Continued)

Evaporation —_
Run No Rate by Temp. Ave. Rate Rt RH Instrument
' TGA 0 (ng/min) (%) (Figure)
: (mL/m)
(pg/min)
GLT10-1 3.124
GLTI10-2 3.174 3.065+0.148 | 10
GLTI10-3 2.896
GLT100-1 3.814 30 3.814 100 0 SDT Q600
GLT500-1 5.222, 21)
+
GLT500-2 5159 5.241 +0.026 500
GLT1000-1 7.744
+
GLT1000-2 7119 7.432 +0.442 1000
GLPO0O-1 11.64
GLP00-4 L1557
GLP00-5 15.57 12.51 + 1.734 0
GLP00-6 11.54
GLP00-7 1222 40 500 SD(Tz?)"OO
GLP21-1 11.86 -
+
GLP21-2 12.48 12.17__0.438 21.5
GLP45-1 1295
GLP45-2 11.83 2S2mtl VR 44.9

Text continues on page 39.
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33 HD on Teflon

The HD droplets on Teflon tend to bead up, probably due to the low surface cnergy of
Teflon, resulting in a smaller surface area. This caused the drops to evaporatc slowly from the
Teflon surface (3.2 pg/min) compared to their evaporation from the glass (5.0 ug/min) or aluminum
surfaces (7.7 pg/min) under the same environmental condition (shown in Figure 23). Actually, the
HD drops spread out more on the aluminum surface than they did on the glass surfacc, thus
evaporating faster than they did on the other two surfaces. Also, the evaporation rate is not as lincar
as in the case of glass or aluminum, which indicates that the surface area of the drop changed
throughout the evaporation process. Figure 24 shows drop size effect on the evaporation of HD
drops from a Teflon surface. As shown before, in the casc of eithcr glass or aluminum, incrcase in
the drop size increased the evaporation rate of HD under the experimental condition. When the drop
sizc was increased from | to 3.5 pL on glass, the evaporation rate increased from 2.746 pg/min to
4.403 pg/min (1.60x). Increasing the drop size to 6 pL resulted in an evaporation rate of 6.089
pg/min (2.22x), at 30 °C, with a flow rate of 100 mL/min. On Teflon, when the drop size was
increased from | to 3.5 pL , the evaporation rate increased from 3.202 pg/min to 5.029 pg/min
(1.57x). Increasing the drop size to 6 pL resulted in an evaporation rate of 7.336 pg/min (2.29x),
at 30 °C, with a flow ratc of 1000 mL/m. Figure 25 shows flow rate effect on the evaporation of HD
drops from the Teflon surface. As expected, faster flow rate increased the evaporation ratc of HD
under the experimental condition. The results are summarized in Table 6.

4. CONCLUSIONS

The microbalance wind tunnels provide reproducible and useful mcasurements of an
cvaporation and desorption process describing the environmental fate of chemical contaminants.
Weight loss of HD demonstrated near zero order ratcs for aluminum and glass, indicating film
cvaporation from droplets that spread over a large wetted area at low contact angle. The spreading
rate and wetted area were greater for glass and aluminum than for Teflon; therefore, the ratcs were
more rapid for glass and aluminum than for Teflon. The initial evaporation rates were often about
the same rate for different drop sizes, showing parallel cvaporation curves, with time to complete
cvaporation incrcasing smoothly with increased droplet size. Slight variations from this pattern can
be attributed to the larger surface area for the bigger drop. Environmental factors (e.g., flow ratc and
tcmperature) influenced the HD evaporation rate as expected; but, relative humidity has apparently
little, if any, effect on the HD evaporation rate on these surface materials.
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Table 6. Evaporation Rates of HD Droplets from Teflon Surface Measured
by Microbalance Wind Tunnel (TGA) at 30 °C and 0% RH.

Evaporation
Run No Rate Dropsize Ave. R.ate Flow R.ate Instrument
' by TGA (uL) (ng/min) (mL/min) (Figure)
(ng/min)
TEF1001 ST1S
TEF1002 2l
TEF1003 3.131 10 |320240370 | 1000 TGé‘i? 20
TEF1004 3.054
TEF1005 3.382
TEF3001 4.342
TEF3002 4.607
DE /0 i) 35 | 5.029+0.782
TEF3004 5.806 TGA2950
TEF3005 4.978 1000 (24)
TEF3006 4.292
TEF6003 8.395
TEF6004 7.042 6.0 7.336 +0.947
TEF6005 6.571
TEF2010 2.332
TEF3010 2.067
TEFA010 > 460 2.284 £ 0.164 10
TEF5010 2213 L0 SDT Q600
TEF1100 2.852 ' (25)
TEF2100 2. 710
TEF3100 3.060 2.928 +0.180 100
TEF4100 3.091
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